Part Number Hot Search : 
EVKIT 20240 7815PI BH6511 DIAMOND 2SD14 ZM33164G RT3P66M
Product Description
Full Text Search
 

To Download VNQ600APTR-E Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1/20 october 2004 vnq600ap-e quad channel high side driver rev. 1 table 1. general features (*) per each channel n dc short circuit current: 22a n cmos compatible inputs n proportional load current sense n undervoltage & overvoltage  shut-down n overvoltage clamp n thermal shut-down n current limitation n very low stand-by power dissipation n protection against:  loss of ground & loss of v cc n reverse battery protection (**) n in compliance with the 2002/95/ec european directive description the vnq600ap-e is a quad hsd formed by assembling two vnd600-e chips in the same so- 28 package. the vnd600-e is a monolithic device designed in | stmicroelectronics vipower m0-3 technology. figure 1. package the vnq600ap-e is intended for driving any type of multiple loads with one side connected to ground. this device has four independent channels and four analog sense outputs which deliver currents proportional to the outputs currents. active current limitation combined with thermal shut-down and automatic restart protect the device against overload. device automatically turns off in case of ground pin disconnection. table 2. order codes note: (**) see application schematic at page 11. type r ds(on) (*) i lim v cc vnq600ap-e 35m w 22a 36 v so-28 (double island) package tube tape and reel so-28 vnq600ap-e VNQ600APTR-E
vnq600ap-e 2/20 figure 2. block diagram logic undervoltage overvoltage overtemp. 1 overtemp. 2 i lim2 demag 2 k i out2 i lim1 demag 1 k i out1 input 1 input 2 gnd 1,2 v cc 1,2 output 1 current sense 1 output 2 current sense 2 driver 2 driver 1 logic undervoltage overvoltage overtemp. 3 overtemp. 4 i lim4 demag 4 k i out4 i lim3 demag 3 k i out3 input 3 input 4 gnd 3,4 v cc 3,4 output 3 current sense 3 output 4 current sense 4 driver 4 driver 3
3/20 vnq600ap-e table 3. absolute maximum ratings figure 3. configuration diagram (top view) & suggested connections for unused and n.c. pins symbol parameter value unit v cc supply voltage (continuous) 41 v -v cc reverse supply voltage (continuous) -0.3 v i out output current (continuous), for each channel 15 a i r reverse output current (continuous), for each chan- nel -15 a i in input current +/- 10 ma v csense current sense maximum voltage -3 +15 v v i gnd ground current at t pins < 25c (continuous) -200 ma v esd electrostatic discharge (human body model: r=1.5k w; c=100pf) - input - current sense - output - v cc 4000 2000 5000 5000 v v v v e max maximum switching energy (l=0.11mh; r l =0 w ; v bat =13.5v; t jstart =150oc; i l =40a) 126 mj p tot power dissipation (per island) at t lead =25c 6.25 w t j junction operating temperature internally limited c t stg storage temperature -55 to 150 c connection / pin current sense n.c. output input floating x x x to ground through 1k w resistor x through 10k w resistor v cc 1,2 gnd 1,2 input2 input1 current v cc 1,2 v cc 3,4 gnd 3,4 input4 input3 v cc 3,4 sense 1 v cc 3,4 output 4 output 4 output 4 output 3 output 2 output 2 output 2 output 1 v cc 1,2 output 3 output 3 output 1 output 1 current sense 2 current sense 3 current sense 4 1 14 15 28
vnq600ap-e 4/20 figure 4. current and voltage conventions table 4. thermal data note: 1. when mounted on a standard single-sided fr-4 board with 0.5cm 2 of cu (at least 35 m m thick) connected to all v cc pins. horizontal mounting and no artificial air flow. note: 2. when mounted on a standard single-sided fr-4 board with 6cm 2 of cu (at least 35 m m thick) connected to all v cc pins. horizontal mounting and no artificial air flow. symbol parameter value unit r thj-case thermal resistance junction-case (max) 15 c/w r thj-amb thermal resistance junction-ambient (one chip on) (max) 60 (1) 44 (2) c/w r thj-amb thermal resistance junction-ambient (two chips on) (max) 46 (1) 31 (2) c/w i s1,2 i gnd1,2 output3 v cc1,2 gnd 1,2 input2 i out3 v cc1,2 v out4 output2 i out2 v out3 input1 i in1 cur. sense1 i sense1 output1 i out1 output4 i out4 v out2 v out1 i in2 i sense2 i sense3 i in4 i sense4 cur. sense2 cur. sense3 cur. sense4 input3 input4 v sense4 v in4 v sense3 v in3 v sense2 i in3 v in2 v sense1 v in1 i gnd3,4 gnd 3,4 i s3,4 v cc3,4 v cc3,4 v f1 (*) (*) v fn = v ccn - v outn during reverse battery condition
5/20 vnq600ap-e electrical characteristics (8v vnq600ap-e 6/20 electrical characteristics (continued) table 8. logic input table 9. protections (see note 4) note: 4. to ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic sign als must be used together with a proper software strategy. if the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles. symbol parameter test conditions min. typ. max. unit v il low level input voltage 1.25 v v ih high level input voltage 3.25 v v i(hyst) input hysteresis voltage 0.5 v i il low level input current v in =1.25v 20 65 m a i ih high level input current v in =3.25v 75 110 m a v icl input clamp voltage i in =1ma i in = -1ma 66.8 -0.7 8v v symbol parameter test conditions min. typ. max. unit i lim dc short circuit current v cc =13v 5.5v 7/20 vnq600ap-e electrical characteristics (continued) table 10. current sense (9v vcc 16v) (see figure 5) note: 5. current sense signal delay after positive input slope. figure 5. i out /i sense versus i out symbol parameter test conditions min typ max unit k 1 i out /i sense i out1,2 =0.35a; v sense =0.5v; t j = -40c...+150c 3100 4150 5560 k 2 i out /i sense i out =2a; v sense =2.5v; t j =-40c t j = 25c...+150c 3750 4000 4600 4600 5700 5400 k 3 i out /i sense i out =4a; v sense =4v; t j =-40c t j = 25c...+150c 4000 4100 4500 4500 5200 5150 v sense1,2 max analog sense output voltage v cc =5.5v; i out1,2 =2a; r sense =10k w v cc >8v; i out1,2 =4a; r sense =10k w 2 4 v v v senseh analog sense output voltage in overtemperature condition v cc =13v; r sense =3.9k w 5v r vsenseh analog sense output impedance in overtemperature condition v cc =13v; t j >t tsd ; all channels open 400 w t dsense current sense delay response to 90% i sense (see note 5) 500 m s 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 3000 3500 4000 4500 5000 5500 6000 6500 min.tj=-40c max.tj=-40c min.tj=25...150c max.tj=25...150c typical value i out /i sense i out (a)
vnq600ap-e 8/20 figure 6. switching characteristics (resistive load r l =2.6 w ) table 11. truth table (per channel) conditions input output sense normal operation l h l h 0 nominal overtemperature l h l l 0 v senseh undervoltage l h l l 0 0 overvoltage l h l l 0 0 short circuit to gnd l h h l l l 0 (t j t tsd ) v senseh short circuit to v cc l h h h 0 < nominal negative output voltage clamp ll 0 v out dv out /dt (on) t r 80% 10% t f dv out /dt (off) i sense t t 90% t d(off) input t 90% t d(on) t dsense
9/20 vnq600ap-e table 12. electrical transient requirements on v cc pin iso t/r 7637/1 test pulse test levels i ii iii iv delays and impedance 1 -25 v -50 v -75 v -100 v 2 ms 10 w 2 +25 v +50 v +75 v +100 v 0.2 ms 10 w 3a -25 v -50 v -100 v -150 v 0.1 m s 50 w 3b +25 v +50 v +75 v +100 v 0.1 m s 50 w 4 -4 v -5 v -6 v -7 v 100 ms, 0.01 w 5 +26.5 v +46.5 v +66.5 v +86.5 v 400 ms, 2 w iso t/r 7637/1 test pulse test levels results i ii iii iv 1cccc 2cccc 3acccc 3bcccc 4cccc 5ceee class contents c all functions of the device are performed as designed after exposure to disturbance. e one or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.
vnq600ap-e 10/20 figure 7. waveforms (per each chip) sense n input n normal operation undervoltage v cc v usd v usdhyst input n overvoltage v cc sense n input n sense n load current n load current n load current n overtemperature input n sense n t tsd t r t j load current n v ov v cc > v ov v cc < v ov short to ground input n load current n sense n load voltage n input n load voltage n sense n load current n 11/20 vnq600ap-e figure 8. application schematic gnd protection network against reverse battery solution 1: resistor in the ground line (r gnd only). this can be used with any type of load. the following is an indication on how to dimension the r gnd resistor. 1) r gnd 600mv / 2(i s(on)max ). 2) r gnd 3 (- v cc ) / (-i gnd ) where -i gnd is the dc reverse ground pin current and can be found in the absolute maximum rating section of the devices datasheet. power dissipation in r gnd (when v cc <0: during reverse battery situations) is: p d = (-v cc ) 2 /r gnd this resistor can be shared amongst several different hsd. please note that the value of this resistor should be calculated with formula (1) where i s(on)max becomes the sum of the maximum on-state currents of the different devices. please note that if the microprocessor ground is not common with the device ground then the r gnd will produce a shift (i s(on)max * r gnd ) in the input thresholds and the status output values. this shift will vary depending on how many devices are on in the case of several high side drivers sharing the same r gnd . if the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the st suggests to utilize solution 2 (see below). solution 2: a diode (d gnd ) in the ground line. a resistor (r gnd =1k w) should be inserted in parallel to d gnd if the device will be driving an inductive load. this small signal diode can be safely shared amongst several different hsd. also in this case, the presence of the ground network will produce a shift ( j 600mv) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. this shift will not vary if more than one hsd shares the same diode/resistor network. series resistor in input line is also required to prevent that, during battery voltage transient, the current exceeds the absolute maximum rating. safest configuration for unused input pin is to leave it unconnected, while unused sense pin has to be connected to ground pin. load dump protection d ld is necessary (voltage transient suppressor) if the load dump peak voltage exceeds v cc max dc rating. the same applies if the device will be subject to transients on the v cc line that are greater than the ones shown in the iso t/r 7637/1 table. m c i/os protection: if a ground protection network is used and negative transients are present on the v cc line, the control pins will be pulled negative. st suggests to insert a resistor (r prot ) in line to prevent the m c i/os pins to latch-up. the value of these resistors is a compromise between the leakage current of m c and the current required by the hsd i/os (input levels compatibility) with the latch-up limit of m c i/os. -v ccpeak /i latchup r prot (v oh m c -v ih -v gnd ) / i ihmax calculation example: for v ccpeak = - 100v and i latchup 3 20ma; v oh m c 3 4.5v 5k w r prot 6k w . recommended r prot value is 5k w. v cc1,2 output2 c. sense 1 d ld +5v r prot output1 r sense1,2,3,4 input1 c. sense 2 input2 m c r prot r prot r prot input3 input4 c. sense 3 c. sense 4 d gnd r gnd v gnd gnd1,2 gnd3,4 output3 r prot r prot r prot r prot v cc3,4 output4 note: channels 3 & 4 have the same internal circuit as channel 1 & 2.
vnq600ap-e 12/20 figure 9. off state output current figure 10. high level input current figure 11. input clamp voltage figure 12. input low level figure 13. input high level figure 14. input hysteresis voltage -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 il(off1) (ua) off state vcc=36v vin=vout=0v -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 iih (ua) vin=3.25v -50 -25 0 25 50 75 100 125 150 175 tc (c) 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8 vicl (v) iin=1ma -50 -25 0 25 50 75 100 125 150 175 tc (c) 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 vil (v) -50 -25 0 25 50 75 100 125 150 175 tc (c) 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 vih (v) -50 -25 0 25 50 75 100 125 150 175 tc (c) 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 vhyst (v)
13/20 vnq600ap-e figure 15. overvoltage shutdown figure 16. i lim vs t case figure 17. turn-on voltage slope figure 18. on state resistance vs t case figure 19. turn-off voltage slope figure 20. on state resistance vs v cc -50 -25 0 25 50 75 100 125 150 175 tc (c) 30 32 34 36 38 40 42 44 46 48 50 vov (v) -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 10 20 30 40 50 60 70 80 ilim (a) vcc=13v -50 -25 0 25 50 75 100 125 150 175 tc (oc) 250 300 350 400 450 500 550 600 650 700 750 dvout/dt(on) (v/ms) vcc=13v rl=2.6ohm -75 -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 10 20 30 40 50 60 70 80 90 100 ron (mohm) iout=5a vcc=8v & 36v -50 -25 0 25 50 75 100 125 150 175 tc (oc) 0 50 100 150 200 250 300 350 400 450 500 dvout/dt(off) (v/ms) vcc=13v rl=2.6ohm 5 10152025303540 vcc (v) 0 10 20 30 40 50 60 70 80 ron (mohm) iout=5a tc= 150c tc= 25c tc= - 40c
vnq600ap-e 14/20 figure 21. maximum turn off current versus load inductance a = single pulse at t jstart =150oc b= repetitive pulse at t jstart =100oc c= repetitive pulse at t jstart =125oc conditions: v cc =13.5v values are generated with r l =0 w in case of repetitive pulses, t jstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves b and c. 1 10 100 0.001 0.01 0.1 1 10 100 l(mh) i lmax (a) a b c v in , i l t demagnetization demagnetization demagnetization
15/20 vnq600ap-e so-28 thermal data figure 22. so-28 double island pc board table 13. thermal calculation according to the pcb heatsink area note:r tha = thermal resistance junction to ambient with one chip on note:r thb = thermal resistance junction to ambient with both chips on and p dchip1 =p dchip2 note:r thc = mutual thermal resistance figure 23. r thj-amb vs pcb copper area in open box free air condition chip 1 chip 2 t jchip1 t jchip2 note on off r tha x p dchip1 + t amb r thc x p dchip1 + t amb off on r thc x p dchip2 + t amb r tha x p dchip2 + t amb on on r thb x (p dchip1 + p dchip2 ) + t amb r thb x (p dchip1 + p dchip2 ) + t amb p dchip1 =p dchip2 on on (r tha x p dchip1 ) + r thc x p dchip2 + t amb (r tha x p dchip2 ) + r thc x p dchip1 + t amb p dchip1 1 p dchip2 layout condition of r th and z th measurements (pcb fr4 area= 58mm x 58mm, pcb thickness=2mm, cu thickness=35 m m, copper areas: 0.5cm 2 , 3cm 2 , 6cm 2 ). 10 20 30 40 50 60 70 01234567 pcb cu heatsink area (cm^2)/island rthj_am b (c/w) r tha r thb r thc
vnq600ap-e 16/20 figure 24. so-28 thermal impedance junction ambient single pulse figure 25. thermal fitting model of a quad channels hsd in so-28 pulse calculation formula table 14. thermal parameter 0.01 0.1 1 10 100 0.0001 0.001 0.01 0.1 1 10 100 1000 time(s) zth(c/w ) 6 cm ^2/island 3 cm ^2/is land 0,5 cm ^2/is land one channel on two channels on on same chip pd1 c1 r4 c3 c4 r3 r1 r6 r5 r2 c5 c6 c2 pd2 r14 c13 c14 r13 tj_1 tj_2 t_amb pd3 c7 r10 c9 c10 r9 r7 r12 r11 r8 c11 c12 c8 pd4 r16 c15 c16 r15 tj_3 tj_4 r17 r18 area/island (cm 2 ) 0.5 6 r1=r7=r13=r15 (c/w) 0.05 r2=r8=r14=r16 (c/w) 0.3 r3=r9 (c/w) 3.4 r4=r10 (c/w) 11 r5=r11 (c/w) 15 r6=r12 (c/w) 30 13 c1=c7=c13=c15 (w.s/c) 0.001 c2=c8=c14=c16 (w.s/c) 5.00e-03 c3=c9 (w.s/c) 1.00e-02 c4=c10 (w.s/c) 0.2 c5=c11 (w.s/c) 1.5 c6=c12 (w.s/c) 5 8 r17=r18 (c/w) 150 z th d r th d z thtp 1 d C () + = where d t p t =
17/20 vnq600ap-e package mechanical table 15. so-28 mechanical data figure 26. so-28 package dimensions symbol millimeters min typ max a 2.65 a1 0.10 0.30 b 0.35 0.49 b1 0.23 0.32 c 0.50 c1 45 (typ.) d 17.7 18.1 e 10.00 10.65 e 1.27 e3 16.51 f 7.40 7.60 l 0.40 1.27 s 8 (max.)
vnq600ap-e 18/20 figure 27. so-28 tube shipment (no suffix) figure 28. tape and reel shipment (suffix tr) all dimensions are in mm. base q.ty 28 bulk q.ty 700 tube length ( 0.5) 532 a 3.5 b 13.8 c ( 0.1) 0.6 a c b base q.ty 1000 bulk q.ty 1000 a (max) 330 b (min) 1.5 c ( 0.2) 13 f 20.2 g (+ 2 / -0) 16.4 n (min) 60 t (max) 22.4 tape dimensions according to electronic industries association (eia) standard 481 rev. a, feb 1986 all dimensions are in mm. tape width w 16 tape hole spacing p0 ( 0.1) 4 component spacing p 12 hole diameter d ( 0.1/-0) 1.5 hole diameter d1 (min) 1.5 hole position f ( 0.05) 7.5 compartment depth k (max) 6.5 hole spacing p1 ( 0.1) 2 top cover tape end start no components no components components 500mm min 500mm min empty components pockets saled with cover tape. user direction of feed reel dimensions
19/20 vnq600ap-e revision history table 16. revision history date revision description of changes oct 2004 1 - first issue
vnq600ap-e 20/20 information furnished is believed to be accurate and reliable. however, stmicroelectronics assumes no responsibility for the co nsequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. no license is granted by implication or otherwise under any patent or patent rights of stmicroelectronics. specifications mentioned in this p ublication are subject to change without notice. this publication supersedes and replaces all information previously supplied. stmicroelectron ics products are not authorized for use as critical components in life support devices or systems without express written approval of stmicr oelectronics. the st logo is a registered of stmicroelectronics. all other names are the property of their respective owners ? 2004 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of VNQ600APTR-E

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X